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Abstract
The generalized indirect Fourier transformation (GIFT) technique is a versatile
tool for the evaluation of small angle scattering data. It does not depend on
models for the size and shape of the particles and requires model assumptions
only for the interaction effects that are typically not as sensitive to the details
of the assumptions. We review here the development of the technique from its
inception, focusing on the included interaction models for hard, charged and
attractive spheres, and lamellae. A considerable number of applications has
also been reported ranging from surfactants, emulsions, microemulsions, food
science, and ceramics to melts and block-copolymers.

1. Introduction

Small angle scattering of x-rays (Guinier 1939) and neutrons is an important tool for the
investigations of structures (Guinier and Fournet 1955, Glatter and Kratky 1982, Feigin and
Svergun 1987, Lindner and Zemb 1991, 2002, Brumberger 1995) in fields of research like
life sciences, soft condensed matter and nanotechnology. Static light scattering is similar to
these techniques in many aspects of theory and applications (van de Hulst 1981, Lindner and
Zemb 1991, 2002). Therefore, it is of great interest to have good experimental equipment as
well as powerful evaluation techniques for measured scattering data. Special care must be
taken to consider the interaction effects during evaluation, because intra- and inter-particle
effects influence the measured scattering patterns. The latter cannot be neglected unless the
measured sample is very dilute. Dilution, however, can be technically impossible or may
change the intra-particle structure, as in self-assembled systems (Kotlarchyk et al 1983).
Evaluation techniques are needed that can handle interaction effects while simultaneously
obtaining information on the individual particles.

In general the evaluation techniques can be distinguished into two groups: the
approximation by predefined models for the particles on the one hand, and the model
independent transformation of the scattering data into real space analogues on the other hand.
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Model approximation starts with assumptions on the shape, internal structure and interactions
of the particles. These assumptions are translated into mathematical expressions that describe
the scattering behaviour of such a system. Finally, some parameters are varied to minimize
differences between the model and the actual measured data. For a review on such model
approximations see Pedersen (1997 or 2002). A comparison between model free and model
based scattering data interpretation can be found in Pedersen (1999).

The transformation techniques typically aim at the pair distance distribution function
(PDDF, p(r)) of the particles, which is related to the scattering intensity I (q) by (Porod
1948)

I (q) = 4π
∫ ∞

0
p(r)

sin qr

qr
dr (1)

where q is the magnitude of the scattering vector. It is related to the scattering angle θ and
the wavelength λ via q = (4π/λ) sin (θ/2). Basically, p(r) contains the same information
as I (q) since it is a unique transformation, but it has the advantage of being in real space,
i.e. information on the structures can be read directly from the PDDF (Glatter 1979). It is also
often simpler to identify the reason for differences between the actual PDDF and the PDDF
calculated for a model than interpreting the discrepancies in reciprocal space. The design of
realistic models is thereby facilitated.

The indirect Fourier transformation (IFT) technique (Glatter 1977a, 1977b, 1980a,
1980b, Moore 1980, Svergun et al 1988, Hansen and Pedersen 1991) is the method of choice
to obtain the PDDF. It requires a minimum of a priori knowledge of the system, which can be
of great value for an unbiased interpretation of the data. The model free approach is of limited
value with regard to interacting systems, since in this case the model free PDDF contains
the inter-particle contribution as well as the intra-particle contributions. This combination of
features is often difficult to interpret, and makes a separation of intra- and inter-particle effects
desirable, where the PDDF is just the transformed intra-particle component of the scattering
curve. Such a p(r) function could be interpreted in the same way as one obtained for dilute,
non-interacting particles. Additionally, the separated inter-particle effects contain important,
quantitative information about the system.

The generalized indirect Fourier transformation (GIFT) technique is such an extension
of the IFT to take interaction effects into account. We want to review the development of
this technique since its first introduction in 1997 (Brunner-Popela and Glatter 1997). The
basic principle of the IFT will be recapitulated in section 2.1 as far as it is necessary to
understand the GIFT, which will be presented in section 2.2. Section 3 will deal with models
for interactions that are currently implemented in our GIFT software package. Applications
will be discussed in section 4, and conclusions as well as the further directions of development
will be given in section 5.

2. Principle

2.1. Indirect Fourier transformation

Following Glatter (1977a, 1977b) the IFT is based on one important assumption, namely that
the p(r) function can be represented as a sum of N basis functions ϕν(r) up to a maximum
dimension Dmax, as long as the basis functions are selected reasonably. Cubic B-splines have
shown to be well suited for this task. These basis functions are Fourier transformed (Fourier
1808) by

ψν(q) = 4π
∫ ∞

0
ϕν(r)

sin qr

qr
dr (2)
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Figure 1. The direct way to obtain the PDDF (top right) function from the experimental Iexp(q)
(top left) would be to calculate a desmeared scattering curve (top centre) and to Fourier transform
it. The difficulties of computing an adequate desmeared scattering curve and termination effect
of the Fourier transformation inhibit this way. The IFT starts with a set of cubic B-splines
(bottom right). They are Fourier transformed (bottom centre) and convoluted with instrumental
broadening curves (bottom left). These transformed broadened splines are then approximated to
the scattering curve. Since all transformations that are applied are linear, the coefficients obtained
for the approximation can be used for the splines as well, resulting in the PDDF.

which is analogous to equation (1), where p(r) is replaced with ϕν(r). The sum of
the transformed functions ψν(q) represents the scattering intensity I (q) measured with
a theoretically perfect instrument. Instrumental broadening effects can be considered by
smearing the functionsψν(q), which results in a new set of functions χν(q). Ĩ (q), the sum of
these functions, can represent the actual measured scattering curve Iexp(q). Therefore,

p(r) =
N∑
ν=1

cνϕν(r)

I (q) =
N∑
ν=1

cνψν(q)

Iexp(q) ≈ Ĩ (q) =
N∑
ν=1

cνχν(q).

(3)

The Fourier transformation resulting in ψν(q) and the smearing transformations resulting
in χν(q) are linear transformations, which guarantees that the factors cν are the same for
all the sums in equation (3). Therefore, it should be sufficient to solve the linear equation
system linking Iexp(q) in the measured q-range to the functions χν(q) to obtain the factors
cν , which define the function Ĩ (q). These factors cν can be used directly to calculate the
desmeared scattering curve I (q) and the PDDF from the sets of basis functions ψν(q) and
ϕν(r) (figure 1). The corresponding condition for the equation system should be to minimize
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the mean deviation L

L = 1

M

M∑
i=1

√√√√
(

Iexp(qi)− ∑N
ν=1 cνχν(qi)

)2

σ 2(qi)
(4)

where M is the number of measured points in the scattering curve and σ is the standard
deviation of the experimental data points.

A modification of the equation system is necessary because it is a so-called ‘ill posed
problem’, i.e. experimental uncertainties and the truncation of the scattering curve at low and
high q values cause the obtained p(r) function to oscillate around the true solution. If one
links the value cν to the coefficients of the neighbouring basis functions cν−1 and cν+1 in a
way that a side condition should minimize the function

Nc′ =
N−1∑
ν=1

(cν+1 − cν)
2 (5)

simultaneously with condition (4), one can eliminate these oscillations. Therefore, one has to
solve the problem

(L + λNc′ ) = min (6)

where the Lagrange multiplier λ determines the relative importance of the side condition.
The correct Lagrange multiplier λopt can be determined by a Lagrange multiplier variation.
L is low and Nc′ is nearly constant for the Lagrange multipliers close to λopt (Glatter 1977a,
1977b). It should be noted that the experimental uncertainty of a constant background can
be handled in terms of a delta function added to the splines at r = 0 (Hansen and Pedersen
1991).

The solution of the stabilized equation system results not only in the PDDF, but it contains
also the desmearing of the experimental scattering curve. This is the case since the sum of
cνψν(q) is the scattering curve I (q) without any instrumental broadening effects.

It should be mentioned that the cross section Ic(q) ∝ I (q)/q and thickness It(q) ∝
I (q)/q2 functions of cylinders and lamellae can also be used for the IFT. There, the
sin (qr)/(qr) function in equation (1) is replaced by a zeroth order Bessel function J0(qr) for
cylinders and by cos (qr) for lamellae. The procedure thereafter is the same as for particulate
systems and results in a cross section pc(r) or a thickness pt(r) function that can be interpreted
in the same way as a standard PDDF (Glatter 1980b).

Another special case includes size distributions. In the case of polydisperse particles
the measured intensity is the average of the different sizes weighted by the amount of the
individual size relative to the other sizes. In this case the sin(qr)/(qr) term in equation (1) is
replaced in general by the theoretical form factor of a sphere (Lord Rayleigh 1911) and instead
of a p(r) function one calculates the size distribution D(r). The basic idea of equations (3) is
retained, and it is only D(r) instead of p(r) that is represented by the set of splines (Glatter
1980a). Essentially, not only spheres, but also any shape of particles defined by a single size
parameter r could be handled in the same way.

2.2. Generalized indirect Fourier transformation

The generalized indirect Fourier transformation is based on the IFT and on the relation
(Zernike and Prins 1927, Brunner-Popela and Glatter 1997)

I (q) ∝ P(q)S(q) (7)
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where P(q) is the form factor that comprises the intra-particular effects and S(q) is the
structure factor that takes the interaction effects into account. Strictly speaking this relation
is only true for spherical, monodisperse particles, or for lamellae, but it can also be used for
polydisperse and elongated particles up to certain limits (see section 3.1).

The structure factor S(q) is 1 for dilute systems. Deviations from 1 build up with
concentration and strength of interactions and typically the parameters describing S(q) are
defined better if the interactions are stronger. The concentration limit, where S(q) starts to
become important, depends on the type of interaction and is for example much higher for hard
spheres than for charged spheres.

In most cases the inter-particle structures are on longer length scales compared to the
individual particle. Therefore, deviations from 1 in S(q) are most pronounced at low q-
values. If 2π/σ � qmin, where σ is the particle diameter and qmin the smallest scattering
vector measured, one can ignore S(q) in most cases. Additionally, if the overall contrast of
the particles is low, P(q) is small at low q and consequently S(q) is also not very accessible,
because it mostly contributes where the measured signal is weak due to the product in
equation (7). This can happen for example in small angle x-ray scattering on micelles where
the hydrophobic core and the hydrophilic shell can have oppositely signed contrasts to the
solute leading to P(0) close to zero. To summarize, S(q) has a weak effect on dilute as well
as on some low contrast systems. Otherwise, it is important to take the interaction effects into
account.

The relation (7) contains a product of two functions that are unknown. Therefore, the
transformation into real space results cannot be performed with the same degree of model-
free assumptions as in the case of an IFT. Consequently, it is necessary to assume a model for
either P(q) or S(q). The idea of GIFT is to calculate S(q) from a model, which allows one
to compute a model free p(r) via P(q) using the standard IFT procedure.

In detail, GIFT calculates S(q) from a model using a set of parameters d j . The Fourier
transformed basis functions ψν(q) are multiplied by this S(q), resulting in a new set of basis
functions ψν(q). These new basis functions are smeared in the same way as in the case of
IFT, and the calculation of the solution coefficients cν is performed as was implemented in
section 2.1. The relations used are

p(r) =
N∑
ν=1

cνϕν(r)

P(q) =
N∑
ν=1

cνψν(q)

I (q) =
N∑
ν=1

cνψν(q) = S(q)
N∑
ν=1

cνψν(q)

Iexp(q) ≈ Ĩ (q) =
N∑
ν=1

cνχν(q).

(8)

The only question remaining after having decided on a model for S(q) is the selection
of the correct parameters d j that describe the interactions. This is done by variation of the
parameters d j until the mean deviation L reaches the global minimum within the parameter
hyperspace. There is no mathematical proof that there exists a global minimum or that this
global minimum corresponds to the correct parameters d j , but simulations (Brunner-Popela
and Glatter 1997) and experimental results of known PDDFs (Brunner-Popela et al 1999,
Lindner et al 2001) show that in general the structure factor parameters can be determined
by finding the global minimum. Trivial exceptions to this rule are models in which different
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sets of parameters d j result in quasi-identical curves S(q). In this case the mean deviation
is the same for all the identical structure factors, and physical meaningful values of d j must
be determined in some other way. Nevertheless, as long as no other parameter set produces a
lower mean deviation, the calculation of p(r) and P(q) will result in the correct curves (Fritz
et al 2000).

The determination of the parameters cν and d j can no longer be done by a set of linear
equations because of the product in equation (7) and the non-linearity of S(q) in its parameters
(Brunner-Popela and Glatter 1997). The selection of the best method to solve the non-linear
least squares problem is essential, because the solution can be found only in an iterative way
forcing the algorithm to be efficient with regard to computation time and reliable in finding the
global minimum. Taylor expansion, gradient search, and the Marquardt algorithm (Bevington
and Robinson 1992) are possible solutions to the problem, but sometimes they fail to find the
global minimum and result in a local one for the d j -values (Brunner-Popela and Glatter 1997,
Brunner-Popela 1998, Bergmann et al 2000). Grid search (Bevington and Robinson 1992)
is reliable, but hardly practicable due to its long calculation time. The Boltzmann simplex
simulated annealing (BSSA) algorithm by Press and co-workers (Press et al 1992) is able
to find the global minimum reliably within a reasonable amount of time (Bergmann et al
2000). A genetic algorithm (Charbonneau 1995) gave similar results to the ones obtained for
the BSSA algorithm. It seems that the exact shape of the hypersurface determines which of
the two algorithms finds the global minimum faster, and no general rule can be given as to
whether the BSSA or the genetic algorithm should be preferred. We decided to use the BSSA
algorithm as our standard.

Finally, it is necessary to state that the introduction of a model for S(q) has effects on
the nature of the resulting PDDF. The PDDF obtained for IFT is largely model free, except
for the selection of the maximum dimension Dmax. In GIFT, the model for S(q) influences
the Fourier transformed basis functions and thereby the solution coefficients cν . This effect is
desirable because it eliminates the interaction effects from the p(r) function, but on the other
hand, it introduces a certain model dependence in the PDDF. This model dependence is still
much weaker than in the cases where models for P(q) are used to describe the size, shape and
internal structure of the particles studied. The necessary a priori knowledge about the form
factor is still kept at a minimum.

Figure 2 shows the effect of including the S(q) in the indirect Fourier transformation. The
PDDF of the simple IFT calculation shows strong oscillations that make it difficult to interpret
the curve. The separation of I (q) into P(q) and S(q) leads to a PDDF that shows only one
peak that is slightly asymmetric to the left-hand side and the oscillations are eliminated. Such
a curve can be interpreted easily in terms of an slightly elliptical homogeneous particle (Fritz
and Bergmann 2004).

In general, the interpretation of such PDDFs can then be done in the standard way
(Glatter 1979). If the particles are inhomogeneous, one can try to deconvolute the PDDF
(Glatter 1981), which will result in the scattering length density profile. If the deconvolution
does not work properly, it is a strong indication that the particle shape deviates considerably
from spherical symmetry. In such cases, it is possible to interpret the PDDF by designing
corresponding models (Fritz and Bergmann 2004).

3. Structure factor models

The previous section has shown that the models for the structure factor are crucial for a GIFT
evaluation. In general such S(q) models are based on an interaction potential between the
particles and the Ornstein–Zernike equation (Ornstein and Zernike 1914) that links the direct
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Figure 2. GIFT evaluation of SANS data of 5% CTAB in 10 mM KCl. (a) Separation of P(q)
(dashed) and S(q) (dotted). The solid line is the product P(q) × S(q) including instrumental
broadening effects. (b) The PDDF obtained by the GIFT calculation (solid) compared to the
standard IFT one, where structure factor contributions have been ignored (dashed). For details of
the experiment and sample see Fritz et al (2000).

correlations between particle positions to the total correlation function including indirect
correlations. Solving the Ornstein–Zernike equation requires an additional closure relation
that determines how the correlation functions depend on the interaction potential (Klein and
D’Aguanno 1996). Correspondingly, the selection of the correct interaction potential is crucial
for a GIFT calculation. Additionally, there is no closure relation that is best under all of
the circumstances and therefore structure factor models based on several different closure
relations have been implemented for each interaction potential in the GIFT.

3.1. Hard spheres

The hard sphere potential is simply zero if the particles do not overlap, and infinity if they
do overlap. It leads to structures that are only controlled by the excluded volume effect. The
Ornstein–Zernicke equation can be solved analytically for such spheres using the Percus–
Yevick closure relation (Percus and Yevick 1958). The resulting structure factor depends
on radius R and volume fraction φ. This model was modified to include polydispersity
using a simple distribution function that can be defined by one width parameter p around
a centre radius Rave. Then xα is the fraction of particles having a radius Rα (Brunner-Popela
and Glatter 1997). A set of structure factors Sα(q, Rα, φ) is calculated and their average is
computed as

Save(q, Rave, φ, p) =
∑
α

xαSα(q, Rα, φ). (9)

The resulting Save(q, Rave, φ, p) is a crude but simple and fast model. Taking into account
that many potentials behave similarly to effective hard spheres (Barker and Henderson 1967)
it can be used even for non-hard sphere interaction potentials. This does not only hold true
for deviations from hard spheres but also for deviations from perfect spherical symmetry.
Additionally, Save for highly polydisperse systems looks similar to the structure factor of
slender rods (van der Schoot 1992, Weyerich et al 1999). Therefore, it can be used to evaluate
scattering data of interacting elongated particles up to a certain degree.

A different approach to treat polydispersity has been also implemented, namely the
‘effective’ structure factor Seff(q) (Salgi and Rajagopalan 1993, Pusey et al 1982). It is based
on the extensive calculation of the scattering intensity of the interacting m-component system
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that is divided by the average form factor of the particles

Seff(q) =
∑m

α,β=1 fα fβ Bα(q)Bβ(q)Sαβ(q)∑m
α=1 xα f 2

α B2
α(q)

(10)

where fα is the form amplitude of species α at q = 0 and Bα(q) the corresponding normalized
form amplitude. Sαβ(q) is the partial structure factor. The better treatment of polydispersity
effects should lead to better results during GIFT evaluation, especially if the particles are
inhomogeneous, which influences Bα(q). Simulations of polydisperse spheres show that the
resulting PDDF is hardly influenced by the choice of Save or Seff (Weyerich et al 1999). Better
structure factor parameters, especially the polydispersity, were obtained for Seff.

3.2. Charged spheres

Charge effects can be treated by three different structure factor models (Fritz et al 2000) that
are all based on a Yukawa type (υYuk) (Yukawa 1935) interaction potential:

υYuk(r) = Z 2e2
0

4πεε0

e−κ(r−σ )

r (1 + κσ/2)2
(11)

where Z is the charge in electron charges e0, ε is the dielectric constant, ε0 the permittivity of
vacuum, κ the Debye screening parameter, σ the particle diameter, and r the centre to centre
distance of the particles.

The structure factor models differ in the closure relation used, namely the rescaled mean
spherical approximation (RMSA) (Hayter and Penfold 1981, Hansen and Hayter 1982), the
hypernetted chain (HNC) (van Leeuwen et al 1959), and the Rogers–Young (RY) (Rogers
and Young 1984) closure relations. RMSA is based on an analytical solution and is
correspondingly fast to calculate. The HNC and RY closures are both calculated numerically
(Klein and D’Aguanno 1996). The evaluation of the Rogers–Young closure relation can
especially lead to long calculation times, but the obtained structure factors describe the
structure thermodynamically consistent.

Simulations and evaluations of SANS data of well defined test samples showed that
PDDFs were of comparable quality for all three structure factor models used. The parameters
for the structure factor are also similar for all models, where the rescaled mean spherical
approximation showed the greatest differences compared to the other two closure relations.
Since the rescaled mean spherical approximation is an analytical solution and therefore
numerically fast, it seems best for a quick evaluation. The HNC closure seems to be a
reasonable choice for a standard GIFT evaluation, since it balances calculation speed and
accuracy, while the RY approximation is rather time consuming even on current desktop
computers. The quality of the results obtained for the RMSA and especially HNC closures
shows that the RY calculation is only necessary if details of the structure factor parameters
are of interest (Fritz et al 2000).

It is impossible to determine all of the parameters of the interaction potential
simultaneously from scattering data, and only Z , σ and the volume fraction can be varied
during a GIFT calculation. Even then, it is necessary to use a two-step approach to determine
all three of the parameters from scattering data unless prior knowledge is available since
an increase in radius and volume fraction can mimic the effect of higher charge. If no prior
knowledge is available a first calculation leads to a separation of the form and structure factors,
where the parameters for the interaction potential are most likely incorrect. The PDDF is
always obtained correctly and can be used to estimate σ . This value of σ can be kept constant
in a second run to obtain the correct volume fraction and charge (Fritz et al 2000).
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3.3. Attractive spheres

Attractive interactions have been implemented in GIFT (Innerlohinger et al 2004) by two
potentials, the square well and the depletion potential. The square well potential is a simple
constant reduction of the interaction energy in a zone close to a particle. Basically, this model
can also be used to describe simple repulsive interactions since an increase in energy, instead
of the reduction, results in a square well potential. The depletion attraction is caused by the
change in osmotic pressure of a non-adsorbing polymer or by the presence of other colloidal
particles (Asakura and Oosawa 1954, 1958, Vrij 1976). It can be approximated in the range
σ < r < σ + d by Bergenholtz et al (2003)

υdep(r) = −φ(R)p kBT
3(1 + ξ)

2ξ 3

( r

σ
− 1 − ξ

)
(12)

where σ is the diameter of the large particles and d the diameter of the small particles or
the radius of gyration of the polymers. ξ = d/σ is a size ratio, φ(R)p is the volume fraction
of the small particles, and r is the centre to centre distance of the colloids, while kBT is the
Boltzmann constant times the absolute temperature. The volume fraction φ(R)p is the volume
of the small particles relative to the free volume, i.e. the total volume minus the volume of the
large particles and their depletion zones, which can be calculated from the volume fraction of
the large particles and the size ratio (Lekkerkerker et al 1992).

As in the case of charged spheres, there are several closure relations that have different
benefits and drawbacks. The relations used for these potentials in GIFT are the Percus–Yevick
closure, the soft core mean sphere approximation (SMSA) (Chihara 1973, Madden and Rice
1980) and the thermodynamically consistent mixture of HNC and SMSA closures, known as
the HMSA closure (Zerah and Hansen 1986). The PY solution is fast and robust, but only
correct if the interactions are not too strong and if the range of the potential is short. The
SMSA closure is optimized for short-range repulsion combined with long-range attraction,
but also deviates systematically for strongly correlated systems. In these cases the HMSA
closure must be used, but just as in the RY closure for charged spheres, calculations are slow,
and under some conditions, no consistent solution can be found. This numerical instability
seems to be worse for depletion potentials than for square well potentials. Therefore, the
depletion potential can be used within the framework of the GIFT, only combined with the
PY and SMSA closures.

The parameters used to describe the interaction effects are, in the case of depletion
interaction, the volume fraction of both types of colloids, the diameter σ and the size
ratio ξ . Volume fraction, diameter, well width and well depth are the four parameters
needed for square well interaction. Similar to charged spheres, the parameters can be quasi-
linearly dependent and thereby impeding unambiguous determination of the parameter values
(Innerlohinger et al 2004). Imposing constraints onto the accessible parameter space is one
way to circumvent this problem. Typically the volume fraction can be estimated from the
particle concentration and can be kept constant during the calculation. Another possibility is
to use a low concentration measurement to obtain P(q), where S(q) ≈ 1. Only the parameters
for S(q) are varied then, while P(q) is kept constant (Innerlohinger et al 2004). Strictly
speaking this procedure corresponds to pure model approximation and should not be termed
‘GIFT’ any more.

3.4. Lamellae

Lamellae show great differences in geometry compared to the spheres discussed so far.
In most cases they form stacks that are theoretically infinite in two dimensions and show
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considerable variation in composition in the third dimension. This variation in the third
dimension within one lamella can be sufficiently described by a thickness PDDF pt(r), which
we have described in section 2.1. The Fourier transform of pt(r) is the thickness form factor
Pt(q). Except for this change of focus in the form factor the GIFT stays the same (i.e. I (q) is
replaced by It(q) and P(q) by Pt(q) in equation (7)). We want to stress that in order to obtain
this It(q) function we have to use the relation I (q) = It(q) · q−2 and that the splines building
up pt(r) are transformed by a cosine transformation and not by a sin(x)/x transformation as
in the globular case.

The structure factor of lamellae can be described in combination with the GIFT in two
ways (Frühwirth et al 2004), namely the modified Caillé theory MCT (Caillé 1972, Nallet
et al 1993) and the paracrystalline theory PT (Hosemann and Bagchi 1964, Guinier 1994).
The structure factor models were further modified according to Pabst et al (2000) by the
addition of a diffuse background. Highly defective or unstacked lamellae, for example in
single lamellar vesicles, can cause such contributions to the scattering intensity I (q) that
are scattering but hardly affected by the typical effects of S(q) that were observed for other
lamellae in the sample. Therefore

It(q) ∝ Pt(q) (S(q)+ Ndiff) (13)

where Ndiff is related to the number of unaligned lamellae.
‘Polydispersity’ was a second modification added to S(q) calculated from both theories,

MCT and PT (Frühwirth et al 2004). If the number of lamellae within a single stack is low,
S(q) shows strong oscillations at low q , which are unobserved in experiments. These artefacts
are eliminated by calculating a series of structure factors with different numbers of lamellae
within the stack. The S(q) is the average of these structure factors weighted by a Gaussian
distribution. The mean deviation of the distribution was calculated as the square root of the
number of lamellae within the stack in order to keep the number of free parameters constant.
The parameters used to describe the structure factor S(q) are therefore the number of layers,
layer spacing, layer flexibility or disorder, and Ndiff.

The S(q) models are implemented in the GIFT technique in such a way that it is possible
to use the original versions of structure factors from MCT and PT as well as the structure
factors including one or both modifications.

3.5. Other models

The current version of the GIFT software contains three further models for S(q), namely a
model for fractal aggregates Sfrac, a model for fluctuations close to the critical point Scrit and
a model for polydisperse cylinders Scyl.

The model Sfrac is taken from the work performed by Teixeira (1988) and takes into
account the power law linking the scattering intensity to the fractal dimension. In many cases
the power law is unobserved at large q-values because of the finite size of the individual
particles within the aggregate. This effect is included by a cut-off length ξ , which has to
be translated into a meaningful parameter for each individual situation. The model is rather
simple and neglects important aspects of the non-fractal local structure in the vicinity of a
particle (Dimon et al 1986).

The structure factor close to a critical point Scrit can be described by a modified Ornstein–
Zernicke form (Kotlarchyk et al 1983). The parameters used are the osmotic compressibility
and the length of the critical fluctuations.

Finally, the model for slender cylinders that are polydisperse in length by van der Schoot
(1992) was implemented. This structure factor model, however, has been hardly tested up to
now in combination with the GIFT technique.



Evaluation of scattering data by the GIFT method S2413

4. Applications

4.1. Surfactant systems

4.1.1. Ci E j systems. Most of the GIFT applications that have been published up to now
are concerned with surfactant systems or other self-assembled structures. The reason for
this is simply the fact that the structure of such self-assembled systems can be a function of
concentration. This behaviour does not allow dilution series to minimize particle interactions.
Even the first application of GIFT (Brunner-Popela et al 1999) was concerned with the
solutions of the nonionic surfactant C12E5 in D2O and microemulsions formed by this
surfactant with n-octane. The focus of this work was mostly on the technical aspects of
comparing applications of Save with Seff. It is also shown that neglecting interaction effects
in IFT can lead to PDDFs that look like the ones of spheres while the actual structure is
elongated.

Glatter et al (2000) extended the work to different Ci E j surfactant solutions, studying
their behaviour close to the critical point. Combining small angle neutron scattering with
depolarized dynamic light scattering and ultra low shear viscosimetry, they investigated
whether the micelles form associates due to attractive interactions or elongate when
approaching the critical temperature. Evaluations were performed based on Save and Scrit. All
of the systems studied showed a sphere to rod transition at all of the concentrations studied.
Attractive interactions are an additional effect close to the critical point, and so the micelles
demonstrate elongation and association.

The commercial surfactant Brij 35 is chemically similar to the pure Ci E j surfactants
with an average composition C12E23. It was studied by Tomšič et al (2004) in an aqueous
solution and dissolved in various simple alcohols as well as in ternary water/alcohol/Brij 35
compositions. In the utilization of Save it was shown that the Brij/water system contains
globular micelles that elongate at concentrations above 15%. Solutions in alcohols resulted in
mostly un-aggregated Brij, while some large structures were also present.

The C12E5/n-octane/water microemulsion system aforementioned was also investigated
by Freiberger et al (2006) using the different structure factor models for hard spheres. They
focused on the limits of the hard sphere model and tested it on the bi-continuous structures of
the one-phase channel.

4.1.2. Other ethyleneoxide systems. The Ci part of these non-ionic surfactants can be
replaced by cholesteryl ethers, resulting in molecules with a bulky, non-flexible hydrophobic
part. Sato et al (2004) investigated systems with 10 and 15 ethyleneoxide groups in
the headgroups of the molecules. According to the GIFT analysis using the hard sphere
interaction potential, the longer hydrophilic chain induced formation of globular micelles,
while the shorter chain resulted in slightly elongated structures. The size and shape of the
micelles do not change over a wide range of concentrations up to 20 wt%. The polydispersity
of the elongated micelles is higher compared to the globular micelles.

Another surfactant with a headgroup based on ethyleneoxide is Tween 40
(polyoxyethylene sorbitan monopalmitate). Microemulsions of this surfactant with water,
isopropyl myristate and Imwitor 308 (glyceryl caprylate) were studied by Podlogar et al
(2004). The structures change from elongated to globular with the addition of water. The
structure factor parameters obtained show a much lower volume fraction than expected
from the composition, indicating that the structures observed do not represent the complete
Tween/Imwitor content added. The increase in polydispersity with observed elongation
corresponds to earlier findings by Weyerich et al (1999).
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4.1.3. Block copolymer solutions. Polyethyleneoxide blocks are also an important
component of many block-copolymer systems that have been studied with GIFT. Park and
Char (2004) studied the gelation of poly (DL-lactic acid-co-glyconic acid) flanked by two
polyethyleneoxide blocks. SANS data were evaluated with Save and could be interpreted well
in terms of a spherical model.

Similar block-copolymer systems where the central block is made of polypropyleneoxide,
known as pluronics (BASF) or synperonics (ICI) are more common. Lindner et al (2003)
investigated the micellar glass formed by the pluronic P94. Small angle x-ray scattering data
were evaluated using Save in a concentration regime from 1 wt% up to 20 wt%. The micelles
formed are globular and do not show any significant change in size and shape over the entire
concentration range. The interaction radii correspond well to the radii obtained from the p(r)
function and the polydispersity is low. Additionally, one could observe the typical effect
for many systems whose hydrophilic blocks are based on ethylene oxide, namely a much
higher hard sphere volume fraction compared to the weight fraction. This is due to the steric
interactions caused by the ethylene oxide chains mimicking larger hard spheres. The relation
between this higher effective volume fraction and the actual weight fraction was found to be
2.1 for all of the concentrations of P94 investigated, which can be interpreted as swelling of
the ethylene oxide chains with water.

Jansson et al (2005) have analysed small angle x-ray scattering data of mixtures of the
pluronic P123 with the cationic surfactant cetyltrimethylammonium chloride (CTAC). They
found a gradual decrease of P123 micelle size with CTAC addition, followed by a bidisperse
state of small particles and micelles, and finally P123 molecules solubilized by CTAC. Low
concentrations were evaluated using Save, since none of the models for the interaction potential
was correct due to the mixture of charge repulsion and steric stabilization. The effective hard
sphere model used resulted in PDDF that showed a decrease of micelle diameter from 21
to 17 nm. At high CTAC concentration a Yukawa potential with HNC closure was used
successfully.

4.1.4. Charged micelles. Solutions of cetyltrimethylammonium bromide (CTAB) in KCl
and KBr were evaluated by Fritz and co-workers (Fritz et al 2000, Fritz and Bergmann 2004)
using the three structure factor models for charged spheres. The aim of these investigations
was to test the structure factor models for charged spheres and to use the CTAB micelle as a
well-characterized model for inhomogeneous spheres.

Mixtures of anionic (sodium oleate) and cationic (trimethylammonium family CnTAB)
show the formation of wormlike micelles (Raghavan et al 2002). The GIFT technique was
used as a method with few model assumptions to check if the model of cylindrical micelles
is appropriate for such systems. Save was used to model the interaction effects instead of
the models based on a Yukawa type potential, since it is suited best to compensate for the
deviations from spherical symmetry by increased polydispersity and since only qualitative
trends can be read from the parameters once the system is truly cylindrical.

Sodium dodecyl sulfate micelles show also cylindrical growth, if p-toluidine
hydrochloride is added as hydrophobic salt (Hassan et al 2003). All three models for Yukawa-
type interaction potentials were used and showed comparable results for the initial state of
globular micelles without any salt addition. Further calculations were therefore performed
using only the RMSA closure. Salt addition led to an increase in length of the structures,
which could be followed by the PDDF and the structure factor parameters.

CTAB micelles doped with increasing levels of 4-ethylphenol show also a transition from
spherical micelles to elongated wormlike micelles (Singh et al 2004). Further addition of the
dopant leads to the formation of vesicles coexisting with few cylinders. The structure factor
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of a Yukawa type interaction potential in combination with the HNC closure can be used to
describe the interaction effects present in this system.

Šegota et al (2001) investigated the micelles formed by sodium 4-(1-pentylheptyl)
benzenesulphonate in water. Using Save and the structure factor model for charged spheres
using the HNC closure they found inhomogeneous oblate structures with a maximum
dimension of 10–12 nm. The PDDFs obtained for the two models are in good agreement.

4.1.5. Other micellar systems. Stradner et al (2000) used GIFT to check the structures
formed in aqueous alkyl polyglucoside solutions on the addition of hexanol. They found a
sphere to rod transition that was then studied in detail with the appropriate models.

Structures formed by the synthetic physpholipide OMGPC at higher concentrations were
investigated by Orthaber and Glatter (2000). The main aim of these experiments was to
prove that the globular core–shell structures that are formed at a low concentration are not
concentration dependent. The structure factor model used was Save.

Fullerenes that have been made water soluble by six sulfobutoxypentyl arms form rodlike
aggregates with an aggregation number of about 32 (Lin et al 2004). The authors verify
their model based on the mean spherical approximation by comparing it to the p(r) function
obtained from GIFT.

4.1.6. Food grade systems. GIFT has been used for several applications related to food grade
surfactant systems. Glatter et al (2001) determined the structures formed by sugar-esters in
n-tetradecane and 1-butanol. The micelles change their shape up to 10 wt% sugar-ester, but
stay globular with increasing aggregation number at larger concentrations. Water addition
leads to swelling. Comparing the PDDFs obtained under different contrast conditions with
the interaction radii shows that the hydrophobic tails interpenetrate to a large extent.

Different five-component food grade oil in water nonionic microemulsions (de Campo
et al 2004, Yaghmur et al 2004) based on R(+)-limonene, ethanol, and water were also
studied with small angle x-ray and neutron scattering. The surfactants used were the nonionic
Brij 96v, Tween 60, and Tween 80; further components were glycerol or propylene glycol.
The size, shape and internal composition of the structures formed along the different dilution
lines could be followed well, if the scattering data were evaluated using Save.

4.1.7. Lamellar structures. Frühwirth et al (2004) used multilamellar vesicles of 1,
2-Dipalmitoyl-sn-glycero-3-phosphocholoine to show the applicability of the models for
lamellar stacks incorporated in the GIFT technique. Increasing temperature led to a decrease
in bilayer thickness and an increase in Caillé parameter. The pt(r) function obtained was in
good agreement with molecular dynamics simulations (Schmelter 2002).

4.2. Other applications

4.2.1. Combination with other methods. Determination of molecular weight is a common
task of small angle scattering since this quantity is directly proportional to the forward
scattering intensity. This relationship is only fulfilled if interaction effects can be neglected.
As soon as the concentration is within the semi-dilute regime, the structure factor considerably
decreases or increases the intensity. Dilution is often impossible, since it might change for
example the aggregation number and thereby the molecular weight. Using GIFT to separate
P(q) from S(q) allows one to use only P(q) to reliably determine the molecular weight
(Orthaber et al 2000).
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The p(r) function can be deconvoluted into a scattering length density profile, if the
system is highly symmetric (Glatter 1981). A combination of intra- and inter-particle effects
within the PDDF inhibits the determination of density profiles. Mittelbach and Glatter (1998)
could show that deconvolution of PDDFs obtained via the GIFT result in reasonable profiles,
since interaction effects have been eliminated by the structure factor.

4.2.2. Emulsions. Emulsions of micrometre size were measured by Lindner et al (2001)
using static light scattering. They found a good agreement between the volume fraction
obtained from Save and the oil concentration used for preparation. The interaction radius
does not correspond as well to half of the maximum dimension as seen from the PDDF, since
the interaction is dominated by the average size while the maximum dimension is determined
by the largest particle within the ensemble. The polydispersity as obtained by the structure
factor was found to increase slightly with concentration.

Innerlohinger et al (2004) have used silicone oil emulsions to test the attractive structure
factor models that they have implemented in the GIFT. Depletion interaction was induced by
Triton X-100 micelles and latex particles. The parameters of emulsion droplet size, size of the
small particles and the volume fractions of large and small particles were regained well from
the GIFT analysis.

Later on, Innerlohinger et al (2006) used a concentration series of such a silicone
oil emulsion to compare results from static light scattering and ultra small angle neutron
scattering. GIFT worked well for both techniques, and it could be shown that multiple
scattering and instrumental smearing effects can be handled for such systems.

4.2.3. Inorganic materials. The surface charge of 3-(trimethoxysilyl) propyl methacrylate
coated Stöber silica particles was investigated by Maranzano et al (2000) using various
techniques. One of these methods was SANS in combination with direct model approximation
and GIFT. The effective charge was determined assuming a Yukawa type potential in
combination with the HNC closure relation.

Charge stabilized colloidal particles can be destabilized by increasing the salt
concentration or changing the pH towards the isoelectric point. Wyss et al (2004) used this
effect caused by enzymatic activities to cast green-bodies, which can then be sintered to result
in the desired ceramics. They followed the destabilization and aggregation process by small
angle light scattering and quantified the strength of the attraction between the particles by
approximating the interaction potential with a square well potential in combination with the
HMSA closure relation. The data are also compared with theoretical DLVO calculations.

Christoforides et al (2002) used the averaged hard sphere structure factor model to
analyse the scattering data of controlled pore glasses. The evaluation results in parameters
for porosity (from volume fraction), polydispersity and the size of the solid entities from the
hard sphere radius. The authors used the version of the indirect Fourier transformation that
leads to a size distribution D(r), which allowed for the determination of the pore radii. The
related Vycor glass produced similar results.

4.2.4. Organic materials. Micelles formed in asymmetric poly(ethylenepropylene-b-
dimethylsiloxane) diblockcopolymers melts were investigated by Wang et al (2002) using
small angle x-ray and neutron scattering. Using GIFT in combination with Save showed
that the micelle remain unchanged in size while heating but their number density decreases
gradually.
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5. Conclusions and directions

Although many models for interactions have been implemented in GIFT, this type of
development is unfinished. Even spherical particles, which have been covered the best up to
now, show a great number of interactions that are unimplemented such as steric interactions,
or soft, deformable cores. In particular, most types of deviations from spherical symmetry
have hardly been touched upon. A structure factor model for hexagonally ordered cylindrical
structures, similar to the structure factors of lamellae, is currently being developed. The
description of semi-dilute cylindrical or elongated structures will be another future step.
Finally, it might be interesting to use a kind of inverse approach, where the form factor is
kept constant and the interaction potential for the structure factor is described with only few
model assumptions. Another approach that is currently studied is to take a model for P(q),
but to describe the Fourier transformed structure factor, namely the pair correlation g(r), in
terms of splines, following the ideas of IFT.
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